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In this work, we show that in any finite system, the binary friction tensor for 
two Brownian particles cannot be directly estimated from an evaluation of the 
microscopic Green-Kubo formula, involving the time integral of force-force 
autocorrelation functions. This pitfall is associated with a subtle inversion of the 
thermodynamic and long-time limits and leads to spurious results for the 
estimates of the friction matrix based on molecular dynamics simulations. Starting 
from a careful analysis of the coupled Langevin equations for two interacting 
Brownian particles, we derive a method to circumvent these effects and extract 
the binary friction tensor from the correlation function matrix of the instan- 
taneous forces exerted by the bath particles on the fLxed Brownian particles, and 
from the relaxation of the total momentum of the bath in a finite system. The 
general methodology is applied to the case of two hard or soft Brownian spheres 
in a bath of light particles. Numerical estimates of the relevant correlation func- 
tions and of the resulting self and mutual components of the matrix of friction 
tensors are obtained by molecular dynamics simulations for various spacings 
between the Brownian particles. 

KEY WORDS: Brownian motion; friction matrix; hydrodynamic predictions; 
finite-size effects; molecular dynamics simulations. 

This paper is dedicated to B. Jancovici on the occasion of his 65th birthday. 
I Laboratoire de Physique, Ecole Normale Sup6fieure de Lyon (URA CNRS 1325), 69007 

Lyon, France; e-mail: lbocquet@physique.ens-lyon.fr. 
2 Permanent address: Institute of Theoretical Physics, Warsaw University, Hoza 69, 00-681 

Warsaw, Poland. 

321 

0022-4715/97/1000-0321512.50/0 �9 1997 Plenum Publishing Corporation 



322 Bocquet e t  al. 

1. INTRODUCTION 

Ever since Green-Kubo (GK) formulae have been derived, expressing 
linear transport coefficients as time integrals of correlation functions of 
thermally fluctuating dynamical variables, it has been known that par- 
ticular care must be exercised in evaluating these integrals from correlation 
functions for finite systems. ~) Strictly speaking, GK formulae yield non- 
zero results only provided the thermodynamic limit is taken before the 
upper limit in the GK integral is taken to infinity. To obtain sensible, non- 
zero results from the integration of correlation functions of finite systems, 
like those provided by molecular dynamics (MD) simulations of samples of 
N ~-10 2 -  10 4 particles, a somewhat arbitrary upper cut-off r~v must be 
applied. For most transport coefficients, involving systems of identical or 
similar particles, the resulting values are not very sensitive to the precise 
value of rat, since it is found that after a time of the orderof  the initial, fast 
relaxation of the system under study (typically a picosecond for dense 
fluids), the integral reaches a "plateau" value, which roughly coincides with 
the time beyond which the MD-generated correlation function drops below 
the noise level. 

However, the difficulty is less easily overcome when one considers the 
classic example of the friction coefficient ( exerted on a heavy Brownian 
particle by a bath of much lighter particles. ( is related to the time integral 
of the autocorrelation function (ACF) of the instantaneous force exerted by 
the bath particles on the Brownian particle. Recent MD simulations clearly 
show that no well-defined "plateau" value of the GK integrand is observed 
in systems involving several hundred bath particles, so that the cut-off time 
becomes totally arbitrary. ~2'3) In practice, ( was determined from the 
relaxation of the total momentum of the fluid, due to the collisions with a 
f'Lxed Brownian particle of infinite mass M. In this paper, we consider the 
case of two Brownian particles suspended in a bath of discrete light par- 
ticles. We show that finite size effects are even more subtle in this system 
and lead to spurious results for the computed friction tensor. We then present 
a method to overcome these effects and obtain the correct friction tensor 
valid in the thermodynamic limit. This is a first step in a statistical (first 
principles) approach to the hydrodynamic interactions in suspensions; such 
interactions are traditionnally derived from macroscopic hydrodynamics ~4) 
which ignore the discrete nature of the bath, and are hence expected to fail 
at nanometric scales, like those explored by modem surface force machines. ~s) 

2. SPURIOUS FINITE SIZE EFFECTS 

Consider two heavy, spherical Brownian particles suspended in a fluid 
or bath of much lighter atoms or molecules. The friction tensor ~" relates 
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the fluctuations of the forces acting on each Brownian particle to the 
velocities of the two Brownian particles: 

6Fl(t) = -(11 V l ( t ) -  (l/V2(t) 
= = 

6F2(t) = - ( 2 1 V l ( t ) -  =~22V2(t) 
(1) 

where the 2 x 2 matrix (=ab of friction tensors is a complicated function of 
the relative position R = R 1 -  R2 of the two Brownian particles. 

The evaluation of this tensor is a classic problem in macroscopic 
hydrodynamics which has been given a complete solution quite recently. (4) 
Conservation laws inside the bath lead to long range hydrodynamic inter- 
action effects between the suspended particles, which decrease like 1/IRI: 

("/• = ~"/• { ( 3 & )  ) 3 }  
_,1 _-~, =~o 1+ ~ , / m  +~[(~/IRI ] 

=12 =21 - "/• 8 - ~  1 +(_9[(~r/lR]) 3] 

(2) 

s is the diameter of the Brownian particles, (o = 3nrI,S is the Stokes 
estimate of the friction coefficient for a single sphere in the fluid (of shear 
viscosity r/) and the index I1(1) refers to the direction parallel (perpen- 
dicular) to R. The numerical constants 0c,/j. are ~• = 1 and ~, = 2. Note 
that these estimates are valid in the limit where the distance between the 
spheres is much larger than their radius. In the opposite limit IRI/S ~ 1 
(lubrication limit), the main contribution to friction stems from the parallel 
component of the friction tensor, which is shown to diverge like 1/hab, with 
hat  , the minimal distance between the two spheres. (6) 

However the macroscopic description completely neglects the molecular 
nature of the suspending bath, which is treated as a continuum. Therefore, 
the validity of the hydrodynamic results becomes dubious when the 
diameter, a, of the fluid particles and that of the suspended Brownian 
spheres are comparable or when the minimal distance between the surfaces 
of the Brownian spheres becomes of the order of a. In particular, one 
expects the discrete nature of the bath to remove the divergence of friction 
in the lubrication limit. Even more questionable is the validity of the long- 
range character of the hydrodynamic interactions between the Brownian 
particles in this case. 

In this paper, we use numerical simulations to compute the friction 
tensors for various geometries in the case where a/,S is of the order of 
unity. Our starting point is a microscopic expression for the friction tensor, 

822/89/1-2-22 
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relating the latter to equilibrium force-force correlation functions, in the 
form of a Green-Kubo formula:  (7~ 

1 j-? . (3) ;ab--'~B T d ' t ' ( ~ F ( R a ;  0 ) t ~ F ( R b ,  --'[ '))(eqlRi, R2) 

where ~F(R~; t) = F ( R a ;  t) - (F (Ra) )  (eq[ R 1, 112) is the fluctuation of the 
force experienced by the Brownian particle a resulting from collisions with 
fluid particles. The notation (eqlR~, R2) refers to an equilibrium average 
over the fluid variables in the field of the two fixed Brownian particles, 
located at R~ and R2. This expression (3) has been derived in a variety 
of ways  ~8'9'1~ but recently, we proposed a rigorous and systematic 
approach for a hard-sphere mixture, using a multiple time-scale analy- 
sis, ~2~ which avoids any "ad hoc" assumptions concerning the separation 
of time scales. For hard spheres, the fluctuating force reduces to the rate of 
transfer of momentum from the bath to Brownian particles in the course of 
instantaneous elastic collisions, as one might have intuitively expected, t~3~ 
The average force, on the other hand, which will henceforth be denoted by 
F', for brevity, may be identified with the familiar entropic depletion force 
acting between stericaUy stabilized colloidal particles, t~4~ 

To obtain a quantitative estimate of the friction tensor, one can in 
principle compute the force autocorrelation function (FACF) occuring in 
the r.h.s, of (3) in a numerical experiment, such as in molecular dynamics 
(MD) simulations, to obtain the friction coefficient after integration. We 
might expect that such an estimate, obtained for a finite system, would 
differ from the thermodynamic limit value only by a factor of order of the 
inverse system size. However, we shall show below that this is not the case, 
due to a delicate problem associated with the order of thermodynamic and 
infinite-time (or equivalently infinite mass) limits. We then present a way 
of extracting the exact (infinite size) friction tensors from the dynamics of 
a finite system. 

Let us first try to understand physically why such a spurious 
behaviour should be expected in a finite system. We first recall the situation 
when one attempts to compute the friction coefficient experienced by a 
single Brownian particle, as discussed in refs. 3 and 2. The scalar friction 
coefficient is then defined by 

1 d r (F (0 ) .  F ( "C)  ~ (eq [ R) (4) (=3ksT 
where F is the instantaneous force acting on the Brownian particle fixed 
at R. If we consider a finite system, then this force can be expressed as the 
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time-derivative of the total momentum P(t) of the fluid particles. The 
integration on the r.h.s, of (4) can be done explicitly yielding 

< F ( 0 ) . F ( - r ) > N d z = -  lim <P(t)-P(0)>~r=0 (5) 
t---, oo 

On the contrary, if the thermodynamic limit is taken first in the FACF of 
Eq. (4), before taking time to infinity, then the momentum gained by the 
fluid can be carded off to infinity and the r.h.s, of Eq. (5), with N = oo, does 
not vanish. Now let us return to the case of two fixed Brownian particles 
in the presence of N fluid particles. In this case, the time derivative of the 
total fluid momentum can be identified with the sum of the forces acting on 
the two Brownian spheres: 

l~(t) = 6F(R~ ; t )+  6F(R2; t) (6) 

Therefore, using similar arguments asking the single Brownian particle 
case, we find that the sum of the self and mutual contributions of the 
friction tensor vanishes in any finite system: 

_ 1 I o  {1Na "~'_ 2a - k s  T dr< [6F(RI;  r ) +  6F(R2, r)] 6F(Ra; 0)> N 

_- 1 f o  dz(P(r)  6F(R a" 0)> N=0 (7) 
k B T  ' 

Since there is no reason why this relation should hold, the spurious result 
(7) must be regarded as a consequence of the finite size of the system. On 
the contrary, if the thermodynamic limit is taken first in the force-force 
correlation function of Eq. (3), before letting time go to infinity, then the 
momentum gained by the fluid can once more be carried off to infinity and 
the r.h.s, of Eq. (7) with N =  m does not vanish. 

Clearly, this argument shows that the computation of the friction 
tensor in any t~nite size simulation cannot be an estimate of its N =  oo 
value. However, some information can be extracted from this relation and 
we shall show that for any finite system the following relations hold: 

(1) 
{ I  N = - - { 1 N  = = 2 2  -"  --=(21 = -  2 + (9 (8) 

Let us stress the fact that contrary to the case of a single Brownian 
particle (see discussion above), we expect each term ~ and ~.N _ _12 
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individually to be non-vanishing in the case of two Brownian particles in 
the presence of a finite number of fluid particles. This is related to the fact 
that part of the momentum gained by the fluid due to collisions with one 
Brownian particle can be absorbed by the other Brownian particle. 

3. A P H E N O M E N O L O G I C A L  LANGEVIN  ANALYSIS 

To derive the result (8), we first reconsider the equations of motion of 
two Brownian particles, cast in the form of phenomenological Langevin 
equations: 

P2 = F 2 ( t ) -  Io 

dr Ml l ( t - -  r) �9 PI ( r ) - -  fo 

dr M12( t -  r) �9 Pl(r)  - j'o 

dr M12(t - z)- P2(r) + 5F ~ (t) 

dr M22( t -  r)-P2(r)  + 5F~'(t) 

(9) 

where P a denotes the momentum of the Brownian particle a of mass 
M, Mab the memory matrix, F~(t) the mean (depletion) force exerted on 
the suspended sphere a by the bath in the presence of the other Brownian 
particle, and 5F + the "random" part of the force acting on the Brownian 
particle due to individual collisions with fluid particles impinging on the 
suspended sphere. This phenomenological separation of the force into three 
terms is physically reasonable but it relies on the assumption of a clear 
separation between time-scales associated with the fluid and Brownian 
particles; such a separation can be rigorously proven through the multiple 
time-scale analysis used in ref. 12. 

The properties of the random force 3F + are specified as usual" it is 
assumed to vanish in the mean, to be uncorrelated with the momentum P~ 
of each Brownian sphere and with the mean force F = P~ = - F 2  and to 
have an infinitesimally short correlation time: 

( S F + ( t ) )  = 0  

(SFa+(t) Pb(t ')) = 0 

(SF+( t )  F( t ' ) )  = 0 
(10) 

(ci F~+ (t) 5 F~ (t ' ))  = 2 {.j': dz (SF+( r )  5 F ~ ( 0 ) )  } 5 ( t -  t') 
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for any t >I t'. This last assumption amounts to ignoring memory effects, so 
that the convolution terms on the r.h.s, of Eq. (9) are replaced by instan- 
taneous friction terms acting on each suspended sphere: 

d~ M~b(t-- r) �9 Pb(z) = dz Mab(r) �9 Pb(t) (11) 

This relation relies on a Markovian approximation of the memory matrix 
(or equivalently of the random force), which is assumed to relax much 

faster than the momentum of the Brownian particles. This assumption is 
valid in the limit where the Brownian particles are much heavier than the 
fluid particles, independently of all other quantities (such as the diameters 
of the two species). This limit hence implies an infinite mass density, MIX 3, 
of the Brownian particles compared to that of the fluid. Indeed, the cor- 
relation time r I of the memory matrix can be estimated as a typical 
hydrodynamic time scale inside the fluid, of order X2/v, where X is the 
diameter of the Brownian particle and v = rl/nm is the kinematic viscosity 
of the fluid with number density n. On the other hand, the momentum of 
the Brownian particles relaxes on a time scale r M of order M/~, where a 
typical value for the friction coefficient ( is given by Stokes' law ff ~ 3n~lX. 
It is then easily verified that the ratio V / r ~  vanishes in the M ~ oo limit 
(the diameter X being fixed), which corresponds to the infinite mass density 
limit MIX 3 ~ oo for the Brownian particles. This argument validates there- 
fore the Markovian approximation in our case. 

Using matrix notations, 

P2 ' F2 ' \dV~- (12) 

and 

__~ = dr __,_~(r), --~ = \M2~ M2z (13) 

the Langevin Eq. (9) can be cast in the following compact form 

~ ( t ) = ~ ( t ) -  _~_-.~(t)+d~+(t) (14) 

The friction matrix _~ is related to the fluctuating force autocorrelation 
m 

function via the fluctuation-dissipation theorem 

__~ = F .  ( ~ ) - 1  = f ;  d r ( 6 ~  + (0) d ~  +(r))  �9 (~g~)  -1 (15) 
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The friction tensor ( on the other hand is defined in terms of the time- 
integral of the auto~orrelation function of the fluctuation of the "bare" 
force acting on the Brownian particles, defined as 6~(t)= ~ ( t ) -  ~( t ) .  As 
shown in the appendix, the Laplace transform of this FACF, denoted by 
( ~ ( s )  6 ~ ) ,  can be expressed in terms of the FACF of the random force 
(6~+(s) ~ - + ( 0 ) )  via: 

( )-' 
(6~'(s)  ~ ' )  = 1 + - ~  �9 ( ~ + ( s = 0 )  6 ~ + ( 0 ) )  (16) 

= S 

where the tilda denotes a Laplace transform and s is the Laplace frequency. 
Note that, because of the Markovian assumption, (6~" +(s) ~ -  +(0)) = 
( 6 ~ ( s = 0 )  ~ - + ( 0 ) )  and the memory matrix __~ does not depend on the 
Laplace freqtiency either. 

It is important to specify the ensemble over which the averages (. . .)  
are taken. In order to compare with simulation data, we choose a 
"modified" microcanonical ensemble, in which the energy and momentum 
associated with the complete system (composed of N fluid particles of mass 
m evolving in the presence of two Brownian particles of mass M) are con- 
stant, but in which the position of the two Brownian particles are frozen. 
Note however that their momentum will still fluctuate, since momentum 
can be exchanged between the two Brownian particles and the fluid. There- 
fore the total momentum of the fluid alone is not a conserved quantity 
anymore (as in "standard" microcanonical ensembles). In such an ensemble, 
the mass M of the Brownian particles just acts as a control parameter for 
the amplitude of fluctuations of the total momentum of the fluid. 

The choice of this ensemble is justified in the limit where the masses 
of the Brownian particles become very large, since a wide time-scale sepa- 
ration is expected to occur in this limit. (3) 

In the M ~ oo limit, this "conditional" ensemble is expected to be the 
equilibrium ensemble associated with a simulated system, in which N fluid 
particles evolve in the presence of two Brownian particles of infinite mass, 
according to Newton's equations of motions. These equations of motion 
conserve the total energy of the system. 

Espafiol and Zufiiga (2) obtained the following relation for the momen- 
tum correlation matrix in a system composed of particles of different 
masses mi, valid in a microcanonical ensemble with fixed total energy and 
momentum: 

(P7 "P~) = ksT(m,mj) ~/2 ~p (~ ' -  
(mim~/2~ 
~.,kmk / (17) 
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where 6 denotes the Kronecker symbol and { ~, fl} = x, y, z. Equation (17) 
still applies to our "modified" microcanonical ensemble in which the posi- 
tions of the two Brownian particles are frozen, since the result relies essen- 
tially on the conservation of the total momentum of the system. 

Using this equation, we obtain the following result for the static 
correlation matrix ( ~ )  of the momentum of two Brownian particles 
suspended in a bath of N fluid particles: 

(~)=MknT((1-2)l -21 ) 
- 2 1  ( 1 - 2 ) 1  (18) 

with 2 = M/(2M + Nm). In the following, we will need the inverse of this 
matrix which is easily calculated to be: 

( ~ )  =MknT 1--222 1 

2 
1 - 2 2  1 

1 - 2  
1 - 2 2  1 

(19) 

To summarize, in the previous considerations, we were led to consider 
three different friction tensors, for which we recall the definitions. 

First, in Eq. (1), we introduced the "standard" friction tensor defined 
in Eq. (3) as: 

~ = ~  dt(6~(t) 6~')u=oo _~ ~,v= oo (20) 

where the equilibrium average is taken in a system composed of an infinite 
number of fluid particles (i.e., in the thermodynamic limit), evolving in the 
presence of two fixed Brownian particles. In the rest of the paper, we shall 
refer to this friction tensor as the "physical" friction tensor (to distinguish 
it from the numerically computed one, defined below). 

Similarly, the friction tensor computed in a finite system (like those 
simulated in molecular dynamics simulations) is defined as 

1 r ~  U -  [ dt(6~(t) 6~>u (21) 
= knT : o  

where the average is now taken in a system of two fixed Brownian particles 
and a finite number N of fluid particles. 

Our aim is to relate this estimate, (n, made in finite systems, to its 
physical value (=(N-oo ,  defmed in Eq.-(20). As already discussed in the 

. -  - - .  
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introduction, the connection between these two estimates is not obvious 
due to spurious finite size effects, so that r 6= lim~v_, oo ~ .  

The connection will be achieved vi~ the use of a tl~ird estimate of 
the friction tensor, defined in terms of the random force autocorrelation 
function: 

1 + ~  I +(O)>N (22) 
= k n T  Jo 

As will be argued in the next section, the latter does not present any 
singularity when going to the thermodynamic limit, so that r + =  
lim2v_, oo ~.2v. +, in contradistinction to ~'~ This last estimate of ~he friction 

tensor, r + can be related to r by taking the zero Laplace-frequency 
limit in-Eq. (16), leading to 

~ =  lim 1+  - .(~v.+ (23) 
= ( s - - ,  0 S = 

4. RELATING THE FRICTION TENSORS IN FINITE 
AND INFINITE SYSTEMS 

The microscopic formulae (3) for the friction tensor involve an average 
over the fluid configurations, in the presence of two fixed (i.e. infinitely 
heavy) Brownian particles. However the thermodynamic limit for the bath 
is implicitly assumed, which is out of reach of computer simulations. We 
show below that the order of limits between the thermodynamic limit 
(N ~ oo), and the infinite mass limit (M ~ oo) plays a fundamental role 
and leads to some pathological behavior of the correlation functions in a 
finite system. 

4.a. Infinite Systems 

Let us first consider the case where the thermodynamic limit is taken 
first, i.e., we have to take first the N ~  oo limit followed by the M ~ oo 
limit. In this case, the inverse of the momentum matrix, ( ~ ) - ~ ,  is pro- 
portional to the unit tensor, with a proportionality constant ( M k s T )  -~. 
Using Eq. (15), we thus obtain =~~  1/M ~ 0 as M ~ oo. Relation (16) 
shows that the force autocorrelation function can be identified with the 
random force autocorrelation function, with null memory effects. This 
shows that, in this limit, the friction tensor (+, defined as the time integral 
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of the random force correlation function, can be identified with the 
standard result (3), involving the time integral of the "bare" force auto- 
correlation function, i.e." 

~ + = ~ 1  f: 
= ksT (3 ,~  +(0) 3.~ +(r) )  d r - ~  2v= (24) 

Moreover, we expect that the estimate (24) of the friction tensor will 
not exhibit any singularity when inverting the two previous limits. Indeed, 
as discussed in Section 2, the troubles when inverting these two limits in 
the bare force correlation function stem from the conservation of the total 
momentum of the system, so that the sum of the forces acting on the two 
Brownian particles is equal to the time derivative of the momentum of the 
fluid. Except in the thermodynamic limit, this symmetry leads to spurious 
relations such as Eq. (7). On the contrary, the random force is not affected 
by the total momentum conservation, since all the slowly varying variables 
have been eliminated when projecting onto the fluid variables. Hence, the 
thermodynamic limit of the friction tensor will only differ from the result 
(24) in the { M = oo, N finite} case, by a term of order 1/N: 

However, the projected forces cannot be computed from the dynamical 
trajectories generated in a MD simulation, and we now have to link the 
estimate (24) of (N. § to the estimate of the friction tensor, obtained by 
integrating the b~re force correlation functions in a finite system with two 
fixed Brownian particles, i.e., with M = oo. 

To simplify notations, we shall discard in the following the superscript 
N for the tensor (+. 

4.b. F in i te  S y s t e m s  

We now consider the limit where the mass M of the Brownian par- 
ticles becomes infinite, while the number N of fluid particles is kept finite. 
This will be precisely the situation in computer simulations, where N fluid 
particles evolve in the presence of two fixed Brownian particles. The first 
step to investigate this limit will be to relate the force autocorrelation 
matrix (f io~(t)f i~ ')  to the force autocorrelation matrix of the random 
force via Eq. (16). As we shall see, the structure of the friction matrix 
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defined in Eq. (15) will be of crucial importance to obtain the long-time 
behavior of (d~-(t) d~J). 

The inverse static correlation matrix of the momenta of the two 
Brownian particles can be computed by taking the M ~  oo limit in 
Eq. (19), yielding: 

( ~ t ~ ) _ ] =  1 (1 1) 
Nmks"'-----~ i [ (26) 

and using the fluctuation-dissipation relation (15), the friction matrix can 
be cast in the form: 

~ 1 {~ ,~+~  C ~ + ~ )  (27) 

Note that in the limit { M--. oo, N finite}, the inverse matrix ( ~ ) - - 1  
converges towards a finite value, given in Eq. (26), while the infinite 
mass limit of the matrix (~Y ' )  is undefined, as can be checked using 
Eq. (18). 

Symmetry considerations imply that the tensors ff,~ are diagonal, of 
the form 

eL 0 / 

0 r 
(28.a) 

~ / _r =_r = c~+~ (28.b) 

The subscripts s and m stand respectively for "self' and "mutual" friction 
coefficient and the Oz axis has been chosen along R = R ~ - R 2 ;  the 
orthogonal components along the x and y axes are clearly equivalent. 

The matrix __~ enters Eq. (16) through the combination (! + ~/s) -~. 
With the simplifications embodied in Eq. (28), the latter can be computed 
in a straightforward way, with the result 
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where 4 is a diagonal matrix given by 

l+ot• 0 
1 +2or177 

1 +or177 

--~r 1 +20r 1 
1 +o~ti 

0 1 + 20r 

(30.a) 

with 

1 ~+..l-/li + ~',,,+//ll 
0C.X.ill --  S N m k  B T ( 30.b ) 

and ~ = ~ -  1. 
Collecting Eqs. (30), (29) and (16), we obtain an explicit expression 

for the Laplace transform of the bare force autocorrelation function 
(8,@(s) ~,~) as a function of the Laplace frequency s. 

As s goes to zero, the terms 0c• defined in Eq. (30.b) grow to infinity 
r 

like 1Is and the matrix (1 + ~_)-1 converges accordingly towards a finite 
value 

( . / ff)- i  1 (  1 - } )  
1 + - -  ( s = 0 ) =  - (31) 
- s 7 - _ 1 _  = 

Therefore, replacing Eq. (31 ) into Eq. (23), which relates the two estimates 
( s  and (N. +, we eventually find: 

= _ =+ = =21) (32) 

{+ In where use was made of the symmetry properties ~'~ =_(2-~ and _( ~2 =_ 21. 
other words, we obtain . . . .  

- , +  
(;:1 

- - = 2 + 0  (33)  

This surprising prediction will be checked numerically in Section 6. 
Equation (33) provides a first relation between the "physical" friction 

tensor and the computed one, (n, but is clearly not sufficient to extract the 
whole information. Another relation is needed to determine the self and 
mutual friction tensors separately from MD simulations, which we shall 
find by examining the relaxation of fluctuations in the system. 



334 Bocquet e t  al. 

5. RELAXATION OF FLUCTUATIONS 

5.a. Relaxation of the Time-Dependent Friction 

First, we analyse the relaxation of the time-dependent friction tensor, 
defined by 

~N(t) = k- ~ d~< g~(O)g~(r) >, (34) 

towards its asymptotic value given in Eq. (32). The Laplace transform of 
ff~v(t) can be written in terms of the Laplace transform of the force-force 
~orrelation function according to 

( )-' "("(s) = _l < ,S:(s) 6 : >  =-I 1 + 
= S S = S 

�9 < 6~- +(s= 0) 6 :  +(0)> (35) 

. #  
where the expression of the inverse matrix (1+-$-) -~ is given in 
Eqs. (29)-(30). According to (30), this matrix exhibits three poles (two of 
which are equal) on the real-axis, located at the frequencies: 

2(r :+ ~-/, + em+. - / , )  
O).L/II = - -  Nmk B T (36) 

depending on the component of the matrix under consideration, parallel or 
perpendicular to the vector R. This shows that ~ ( t )  relaxes exponentially 
towards its infinite time value, with a relaxation-time given by 

- 1  
r.l.ill = --c~ (37) 

Since the relation _~(t  = oo)=-_~l~(t  = oo) holds in a finite system 
(see Eq. (33)),3 we eventually obtain - 

logS~(t)=log \ ( ~  + ( ~ (  t =  _- = O+ ) - 2  S.~Nmkn,,.T .t  (38) 

with 0t = { [1, _k }, where the first equality defines S~(t). Therefore a measure 
of the slope of log S~(t) provides the second relation which, with Eq. (33) 
allows a separate evaluation of _~1~ and ~ + _12" 

3 Let  us stress the fact that  this relation only holds in the infinite t ime limit, i.e., null Laplace 
frequency s = O, but  not  for any time, i.e. s # O. 
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However, this analysis shows that the relaxation of (N(t) towards its 
infinite time value, which determines, thanks to Eq. (33)~ the other com- 
bination of friction tensors ~-]-~-~ is rather slow since, according to (37), 
the relaxation times ~• ~tre lYroportional to the system size N. This 
behavior could spoil the estimation of ~-_~z-~, based on a measure of the 
asymptotic value of ~u(t). Fortunately, one-can check that the difference 
between the time ir~tegrals of the self and mutual FACF also relaxes 
towards ~-~ - ~J] (according to Eq. (33)), but on a much shorter time- 
scale, of the o~der of the correlation time of the random force. This fast 
relaxation is due to a compensation between the slow decays of_~ ~ and ~u _12 

as can be easily verified by replacing the expression (30) of the matrix 

(1 + _]_)-1 into Eq. (35). This property will prove very useful to obtain 
accurate estimates of =~ ~ -  ~2-~ from MD simulations (see Section 6). 

5.b. Momentum Relaxation 

Another quantity of interest is the total momentum P(t) of.the N fluid 
particles. Because of the presence of the two infinitely massive Brownian 
particles, P fluctuates, defining a correlation time which is intimately con- 
nected with the friction properties. Due to the conservation of total 
momentum (fluid plus Brownian particles), the momentum of the fluid P(t) 
can be identified with minus the sum of the momenta of the Brownian par- 
ticles, i.e., P = - P ~ - P 2 .  The latter obey the Langevin equations (9) (writ- 
ten in the Markovian approximation ( 11 )). In the { M ~ oo, N finite limit }, 
the memory matrix _~ takes the previously derived form (27), so that we 
finally obtain, after summing the two Langevin equations (9) for P~ and P2 
and noting that F ~ - - F 2 , :  

P(t) 
P( t )=  - 2 { ~  +~2}  ~--~-+ 6F+(t)  (39) 

where 6F + =6F ; -  + 8 F ~  is the total random force acting on the Brownian 
particles and the symmetry relations ~ ~ = _~ and _~ ~z = _~ have been used. 

Since the momenta are uncor~elate~t with-the r-andom forces (see 
Eq. (10)), we conclude that the components of the fluid momentum relax 
exponentially, on time scales identical to those of the integrated FACF, 
given in Eq. (37). 

The equation of motion (39) can be given a simple interpretation. 
Indeed, according to Onsager's principle, the regression of a fluctuation of 
the momentum of the bath will be governed by the equations of motion of 
macroscopic hydrodynamics. In this description, the force exerted by the 
flowing fluid is proportional to the "unperturbed" velocity field computed 
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at the positions of the suspended spheres, as given in Eq. (1). In the case 
of equilibrium fluctuations, this velocity can be identified with the center- 
of-mass velocity of the fluid, v = P ( t ) / m N ,  yielding: 

OFa(t) = - - (al  V( t) -- fa2 V( t) = . . . .  --{;11 "[-(12} P(t).mN, a = 1, 2 (40) 

This leads to the evolution equation of the total momentum of the fluid 

P(t) 
P(t) = t~F l ( t )  + t~F2(t) = --2{;ll +__(12} m N  (41) 

which is equivalent to (39). Note that in Eqs. (40) and (41), the friction 
tensors (~b refer the physical friction tensors (at least, within an error of 
order 60(l/N)). 

The normalized momentum ACF can thus be expressed as: 

] ~+ ~+ ( ,P=(t) .P=(O))~v + 
log F=(t) =_ log )Vmk'-~n T = - 2  ~'=Nmkn"'='T t (42) 

where ~ = { II, _t. } is either a longitudinal or transverse component. 
As expected, the decay of momentum fluctuations behaves exactly as 

the relaxation of the time-dependent friction towards its infinite time-value, 
as embodied in Eq. (38). Both are characterized by the same correlation 

~-+ + time, which is proportional to the combination ( ~. = + (,,. =)(~ = { II, _t. } ) of  
the "physical" friction coefficients. 

The strategy to compute the friction tensors is now clear. We consider 
a system composed of N fluid particles evolving in the presence of two fixed 
Brownian particles. First, we compute the infinite time limit of the correla- 
tion function integral. This gives an estimate of the difference between the 
physical self and mutual friction tensors (see Eq. (33)). On the other hand, 
the sum of these tensors is obtained by analysing the relaxation of fluctua- 
tions in the system (see Eqs. (38, 42)). These two combinations yield the 
desired "physical" friction matrix, as defined in Eq. (3). 

6. M O L E C U L A R  D Y N A M I C S  ESTIMATES 

In order to check the predictions of the phenomenological Langevin 
analysis, we performed molecular dynamics simulations on systems of 
N fluid particles evolving in a periodic box in the presence of two fixed 
Brownian particles. Two types of systems were examined, one involving 
soft interactions between particles and the other with purely hard-sphere 
interactions. 
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6.a. Microscopic models 

In the soft interaction case, the fluid particles were assumed to interact 
through a pairwise soft-sphere potential 

v(r)=e (43) 

while the interaction between the fluid particles and the fixed Brownian 
spheres was chosen to be a "modified" soft-sphere potential, containing a 
hard core 

f( ~ ) 
vs(r) = r--ro 

O(3 

if r >  ro 

if r <ro 

(44) 

In the results described below, the value r0 = a/2 was chosen. The distance 
between the two Brownian particles is held fixed in the simulations. 

The equations of motion were solved numerically with the standard 
Verlet algorithm, which ensures a good conservation of the total energy of 
the system. The time-step was taken to be 6t =O.O05(ma2/e) 1/2. The density 
of the suspending fluid was fixed at ptr 3 =0.47 and the temperature at 
ks T= 1.0e. The methods presented in refs. 2 and 3 were used to compute 
the friction coefficient on a single Brownian particle. In the system defined 
above, the latter is found to be (o ~- 6.5 x/mks T/a 2. Of course, in the case 
of two Brownian particles separated by a distance R, we expect this value 
to be recovered in the [R[ ~ oo limit. The hydrodynamic diameter of the 
Brownian particles, dh, can be defined by assuming the (stick) Stokes' law 
for the friction coefficient, (o = 3n~dh. For the system under consideration, 
this leads to the value dh = 1.95a. 

In the case of purely hard-sphere interactions, MD simulations yield 
exact phase space trajectories, up to computer round-off errors. The micro- 
scopic formula (3) can be extended to the hard-sphere case by replacing the 
continuous force F(t) by the momentum transferred from the fluid spheres to 
the infinitely massive Brownian spheres during instantaneous collisions: (3' 12) 

Fa( t ) - -  2 t~Pca~( t--- tc) (45) 
(c), a 

where the sum is over all collisions between the fluid particles and the fixed 
Brownian particle a and ~pa=--2m(vc, a" re, a)rc, a stands for the momen- 
tum transferred from the fluid particle during collision c; vc,, is the velocity 
of the colliding bath particle just before the collision and f c,~ denotes the 
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unit vector defining the relative position of the bath particle with respect to 
the centre of the Brownian particle. This yields the following expression for 
the friction tensor in the hard-sphere case 

~a2~ = ~'r b < r r c, a 
= ksT 2 

c ~  

v ~ <(~pa (~pa>c,a)(dpbc+k__<6p~>c,b)>~,a (46) 

The notation < ... > c. a denotes a statistical average over fluid/Brownian par- 
ticle a collisions and v is the corresponding collision frequency. Note that 
in the first term on the r.h.s, of (46), the mean value <dPT>c.a of the 
momentum transfer is not substracted, in view of the instantaneous character 
of the collisions. 

In the results presented below, the diameter of the Brownian particles 
is Z" = 2a, and a packing fraction r/f= n/6na3= 0.2468 was chosen for the 
suspending bath (with number density n). With these parameters, the value 
of the friction coefficient on a single Brownian particle was calculated in 
our previous work (3) to be (o = lO.lOx/mksT/tr 2. Using the previous 
definition of the hydrodynamic diameter of the Brownian particles, we 
obtain dh = 2.08a. 

In both cases (soft and hard sphere interactions), the simulation cell 
was chosen to be rectangular, of dimensions L x L x (L + R12), with R~2 = 
[R~-R21 the distance between the two fixed Brownian particles. For a 
given number N of fluid spheres, the dimension L is computed from the 
constraint of given packing fraction r/, for the suspending bath. For increas- 
ing distance d between the spheres, the number of particles N in the simula- 
tion cell was increased, in order to ensure that the distance L between two 
periodic images was significantly larger than the diameter Z" of the fixed 
spheres (L > 4Z at least) and the distance between the spheres (at least 
L > 1.5R12 for the largest R]2 ). A study of the size dependence of the fric- 
tion coefficient has been made for a particular distance R~2 = 5tr between 
the two Brownian particles, in order to ensure that the numerical results 
are not affected by any dramatic finite size effect. As seen on Fig. 3, the fric- 
tion coefficients depend only weakly on the number of fluid particles which 
justifies the use of rather small systems for the numerical estimates. 

6.b. Test of the Phenomenological Analysis 

We begin by testing the phenomenological analysis of Section 5, 
through a comparison of the predictions of the latter with the results of the 
molecular dynamics simulations. 



Friction Tensor for Pair of Brownian Particles 339 

0 

V 
ti  

L__J 

o 

- 2  

- - -  m 

i 
I I , I , ,  , I I 

0 v~wt 200  

b~ 
0 

-2  
I . , i , .I 

0 t/to ~.0 

Fig. 1. Logarithmic plot of the normalized, momentum ACF, F~(t), of the total fluid momen- 
tum versus reduced time for various system sizes and distances between the two (fixed) Brownian 
spheres: (a) in the case of hard spheres; Vmg is the collision frequency between the bath and 
the Brownian particles; (b) in the case of soft interactions; to=(ma2/ksT) U2. The exponential 
decay of the momentum ACF is clearly confirmed by these plots. 

822/89/1-2-23 



340 

1 

V 

I I , I , ,  I,, I 

v , , ,u t  

(a) 

! 

700 

Bocquet e t  al. 

v rll 
L _ _ J  

0 

- 2  

I 

0 

I ' I 

(b) 

! 

v~ut 200 

m 

Fig. 2. (a) Time-dependence of the reduced self (upper curve) and mutual (lower curve) fric- 
tion coefficient, with appropriate sign (e,,b= +1 if a=b and -1 if at:b). (,,~(t) (in units of 
~/mkBT/a 2) is defined as the integral of the corresponding force ACF in a finite system, up 
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Fig. 3. Dependence of the components of the "physical" estimation of the friction tensor ( 
on the size of the system. The particles are hard spheres. The two Brownian particles, of 
diameter Z" = 2tr, are separated by a distance R12 = 5a. N is the number of fluid particles. The 
friction coefficients are measured in units of ~/mkBT/a 2. The circles (resp. triangles) represent 
the components of the friction tensors perpendicular (resp. parallel) to the line joining the 
centres of the Brownian particles. 

We compute first the momentum ACF, which according to Eq. (42), 
may be expected to decay exponentially. Logarithmic plots of the ACF 
should hence yield straight lines, the negative slopes of which are directly 
proportional to the sums (s.~+(m.~ (with 0ce { II, 1} depending on the 
component considered and the subscripts s and m stand for "self" and 
"mutual" friction coefficients). Example of such plots are shown in Fig. l a 
in the case of hard spheres and in Fig. l b in the case of soft interactions, 
which both confirm the predicted behavior. 

We now procede to the main test of the Langevin analysis. In Fig. 2a., 
we present an example of our numerical results. The two continuous curves 
represent respectively the self and mutual  parts of the time integral of the 
FACF: 

~(t) =kBT 

~m(t) =kBT 

(47) 



342 Bocquet e t  al. 

where a e { II, .1. }. Both curves are seen to relax slowly to the same constant 
value (with a minus sign for the mutual contribution), as predicted by the 
theoretical analysis. The circles represent the difference between these con- 
tributions, which is found to relax much faster towards the infinite time 
value of the two previous contributions. This is in complete agreement with 
the Langevin analysis of Section 5. Moreover, according to Eq. (38), the 
sum of the two contributions (47), S~(t), should relax exponentially 
towards zero. This prediction is checked in Fig. 2b., where we plot the 
logarithm of S~(t) as a function of time. This plot yields another estimate 
of the sum (~. +~ + (m +, ~, which is found to coincide within statistical errors 
with the estimate of this quantity based on the momentum ACF. 

7. RESULTS AND DISCUSSION 

The previously described procedure has been used to estimate the 
value of the physical friction tensors for various distances between the two 
Brownian particles: The two microscopic models have been investigated. 
The results are plotted in Figs. 4 and 5 as a function of the distance 
between the two Brownian particles. A typical error bar for the friction 
coefficients is estimated to be of the order of + 10% from comparison of 
several numerical estimates of the coefficients using different methods of 
evaluation, independent runs and different system sizes (from N =  200 to 
N =  800). 

Some interesting results emerge from these plots. First, the divergence 
of the friction tensors as the two Brownian particles approach each other 
(lubrication limit), is removed. As mentioned in the introduction, this is 
not unexpected since this singularity stems from the description of the fluid 
as a hydrodynamic continuum. More surprising is that, for the models 
under consideration, not even a sharp increase of these friction tensors is 
observed in this limit. The second interesting point concerns the striking 
behavior of (a~ around the value R~2 = Z' + a for the hard sphere system. 
As shown in Fig. 5b, an important increase of the absolute value of ( ~  is 
measured at this point, which corresponds geometrically to the situation 
where one fluid particle separates the two Brownian spheres. This finding 
agrees qualitatively with an Enskog-like kinetic calculation, which accounts 
only for static correlations. r A possible explanation for such an increase 
is that in this "confined" geometry, the two Brownian particles can suffer 
many correlated recollisions with a single fluid particle. The corresponding 
transfers of momentum are mainly in the z direction, and nothing special 

4 In this last section, the estimation of the friction tensor always refer to the desired "physical" 
friction tensor, as defined in Eq. (20). 
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should therefore occur for the x component. This expectation is in full 
agreement with the numerical results of Figs. 5a and 5b. Finally we com- 
pare our results with the hydrodynamic predictions for the friction coef- 
ficients in the R~2 ~ Go limit, as displayed in Eq. (2). As is clearly observed 
on Figs. 4 and 5, the hydrodynamic estimates break down for the distances 
and length scales considered here. This discrepancy is certainly a conse- 
quence of the small diameter ratio S/a = 2 between the Brownian and fluid 
particles and the rather short distances considered in our study. However 
more extensive numerical work needs to be done in order to confirm these 
predictions using much bigger systems. Another open question concerns 
the behavior of the friction coefficients as the diameter ratio S/a is 
increased, and will require considerably more numerical work, going 
beyond the stage of this preliminary study. 

APPENDIX 

In this appendix, we give some details of the derivation of Eq. (16). 
First, by noting that ~ ( t )  = ~( t )  - ~ ( t ) ,  the generalized Langevin 

equation (9) can be cast in the form 

0 ~ ' ( t ) = - -  dr ~= ( t - z ) .~ (v )+6~+( t )  (A.1) 

the Laplace transform of which reads: 

6~(s )  = - ~ ( s ) .  ~'(s) + 6 ~  + (s) (A.2) 

where s is the Laplace frequency. On the other hand, ~(s)  is related to 
O~(s) by 

~(s)  = 1 (6~-(s)+ ~ ' ( s ) +  ~( t  = 0)) (A.3) 
s 

Substituting Eq. (A.3) into Eq. (A.2), we obtain after some rearrangements 

6 N ( s )  = - ! + �9 = - - - .  - = 
- S 

+ ! +  = . 6 ~ + ( s )  
- S 

(A.4) 
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Then by multiplying both sides of this equation by 8~-(t =0),  averaging 
and using the statistical properties (10), we obtain the desired equation: 

~(s))-' 
- �9 ( 6 ~ + ( s )  6 ~ ' + ( 0 ) )  ( a . 5 )  

s 

where the relation 8~+(t =0)=8~(t =0) has been used, which can be 
viewed as a consequence of the generalized Langevin equations (A. 1 ). Within 
the Markovian approximation, the memory matrix and the random force 
autocorrelation function can be both replaced by their values at null frequency: 
__~(s)- =~(s=0) and ( ~ - + ( s )  6~-+(0))  ~ ( ~ + ( s = 0 )  8~-+(0)).  Under 
these simplifications, Eq. (A.5) reduces to Eq. (16)of the main text. 
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